Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Röhm and partners establishes Europe-wide alliance for recycling PMMA

Novolex to acquire Pactiv Evergreen with US$6.7 billion

Covestro to invest pilot plant for chemically recycling of elastomers

Products

Dow enhances comfort experience in slabstock foam with cutting-edge polyether polyol

Clariant introduces new Plus series syngas catalysts to market

TMA AUTOMATION begins construction of office and production building in Poland

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Recycling and Circular Economy

CHINAPLAS

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

Fakuma 2024 Highlights

CHINA FOCUS

K 2022 FOCUS

News Videos

strap belt winder | strap band winder | packing belt winder | packing band winder

Discover how Star Plastics processes recycled plastics

(Interview) CPCIF: How to achieve circular and economical

Conference Videos

【Mandarin session:Webinar playback】BASF:Tinuvin® NOR® 211 AR - High performing and value-in-use NOR® HALS® that can resist high levels of UV light, heat and acids

[Webinar playback] SABIC Webinar : Enabling a Circular Economy for Plastics Together

【Mandarin session:Webinar playback】The new generation application of Siriusvision inspection technology in the printing industry

Corporate/Product Videos

ENGEL adheres to the concept of circular economy, focuses on new plastics technology, and we are committed to provide our customers with suitable and high efficient injection molding solutions.

LSP -1600HDPE Three layer Solid Pipe Coextrusion Line

Zhuhai CPT Precision Mold Co.,LTD

Exhibition

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Medical

Reformable thermoplastic biomaterial newly developed for medical implants

Source:Adsale Plastics Network Date :2020-07-10 Editor :JK

A new thermoplastic biomaterial, which is tough and strong but also easy to process and shape has been developed by researchers at the University of Birmingham.

 

A type of nylon, the material’s shape memory properties enable it to be stretched and moulded but able to reform into its original shape when heated. This makes it useful for medical devices such as bone replacements, where minimally invasive surgery techniques require additional flexibility in implant materials.

 

The material was developed in the University’s School of Chemistry, by a team investigating ways to use stereochemistry – a double bond in the backbone of the polymer chain – to manipulate the properties of polyesters and polyamides (nylons).


1_web.jpg

The new biomaterial is useful for medical devices such as bone replacements.


Biocompatible polymers are widely used in medicine, from tissue engineering to medical devices such as stents and sutures. Although much progress has been made in the area of resorbable or degradable materials that are broken down by the body over time, there are still only a handful of non-resorbable polymers that can be used for longer-term applications.

 

Existing non-resorbable biomaterials, like nylons, currently commercially available suffer from a variety of limitations. Metal implants, for example, can wear poorly, leading to particle fragments breaking off, while composite materials can be difficult to process or extremely expensive.

 

The new material can be made using standard chemistry techniques and offers a stable, long-lasting option, with mechanical properties that can be tuned for different end products.

 

Senior researcher, Professor Andrew Dove, says: “This material offers some really distinctive advantages over existing products used to manufacture medical devices such as bone and joint replacements. We think it could offer a cost-effective, versatile and robust alternative in the medical device marketplace.”

 

A further advantage of the material is its amorphous structure. Josh Worch, the postdoctoral researcher who led the work, explains why: “For many plastics, including nylon, the toughness is often dependent on their semi-crystalline structure, but this also makes them harder to shape and mould. However, our new plastic is as tough as nylon, but without being crystalline so it is much easier to manipulate.”

 

The research team was able to design and produce the plastic, which is now covered by a patent, and test it in rats to prove its biocompatibility.

 Like 丨  {{details_info.likes_count}}
Medical

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2020-07-10 Editor :JK

A new thermoplastic biomaterial, which is tough and strong but also easy to process and shape has been developed by researchers at the University of Birmingham.

 

A type of nylon, the material’s shape memory properties enable it to be stretched and moulded but able to reform into its original shape when heated. This makes it useful for medical devices such as bone replacements, where minimally invasive surgery techniques require additional flexibility in implant materials.

 

The material was developed in the University’s School of Chemistry, by a team investigating ways to use stereochemistry – a double bond in the backbone of the polymer chain – to manipulate the properties of polyesters and polyamides (nylons).


1_web.jpg

The new biomaterial is useful for medical devices such as bone replacements.


Biocompatible polymers are widely used in medicine, from tissue engineering to medical devices such as stents and sutures. Although much progress has been made in the area of resorbable or degradable materials that are broken down by the body over time, there are still only a handful of non-resorbable polymers that can be used for longer-term applications.

 

Existing non-resorbable biomaterials, like nylons, currently commercially available suffer from a variety of limitations. Metal implants, for example, can wear poorly, leading to particle fragments breaking off, while composite materials can be difficult to process or extremely expensive.

 

The new material can be made using standard chemistry techniques and offers a stable, long-lasting option, with mechanical properties that can be tuned for different end products.

 

Senior researcher, Professor Andrew Dove, says: “This material offers some really distinctive advantages over existing products used to manufacture medical devices such as bone and joint replacements. We think it could offer a cost-effective, versatile and robust alternative in the medical device marketplace.”

 

A further advantage of the material is its amorphous structure. Josh Worch, the postdoctoral researcher who led the work, explains why: “For many plastics, including nylon, the toughness is often dependent on their semi-crystalline structure, but this also makes them harder to shape and mould. However, our new plastic is as tough as nylon, but without being crystalline so it is much easier to manipulate.”

 

The research team was able to design and produce the plastic, which is now covered by a patent, and test it in rats to prove its biocompatibility.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

Medical
Materials from KRAIBURG TPE used in medical disposable devices
 2024-12-11
Medical
Lubrizol to build medical tubing manufacturing site in India
 2024-11-28
Medical
New mono-material PET blister packaging launched
 2024-11-27
Medical
Syensqo showcases advanced portfolio of medical polymers at Compamed
 2024-11-11
Medical
Teknor Apex expands medical TPEs for biopharmaceutical tubing
 2024-11-07
  Rachel 管理员
Medical
Berry launches fully-recyclable, colored PET pill bottles
 2024-10-29

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Reformable thermoplastic biomaterial newly developed for medical implants

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube