Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Röhm and partners establishes Europe-wide alliance for recycling PMMA

Novolex to acquire Pactiv Evergreen with US$6.7 billion

Covestro to invest pilot plant for chemically recycling of elastomers

Products

Dow enhances comfort experience in slabstock foam with cutting-edge polyether polyol

Clariant introduces new Plus series syngas catalysts to market

TMA AUTOMATION begins construction of office and production building in Poland

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Recycling and Circular Economy

CHINAPLAS

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

Fakuma 2024 Highlights

CHINA FOCUS

K 2022 FOCUS

News Videos

strap belt winder | strap band winder | packing belt winder | packing band winder

Discover how Star Plastics processes recycled plastics

(Interview) CPCIF: How to achieve circular and economical

Conference Videos

【Mandarin session:Webinar playback】BASF:Tinuvin® NOR® 211 AR - High performing and value-in-use NOR® HALS® that can resist high levels of UV light, heat and acids

[Webinar playback] SABIC Webinar : Enabling a Circular Economy for Plastics Together

【Mandarin session:Webinar playback】The new generation application of Siriusvision inspection technology in the printing industry

Corporate/Product Videos

ENGEL adheres to the concept of circular economy, focuses on new plastics technology, and we are committed to provide our customers with suitable and high efficient injection molding solutions.

LSP -1600HDPE Three layer Solid Pipe Coextrusion Line

Zhuhai CPT Precision Mold Co.,LTD

Exhibition

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > 3D printing

3D printing with up to 100% re-used powder

Source:Adsale Plastics Network Date :2020-12-23 Editor :JK

Materialise NV, a leading company in 3D technology solutions in the industrial and medical markets, has presented Bluesint PA12, a material innovation that makes it possible to 3D print with up to 100% re-used powder.

 

3D printing is often considered a sustainable manufacturing technology but a new Lifecycle Analysis indicates that for large series of identical products, 3D printing has a bigger environmental impact compared to a conventional production technology. With the announcement of Bluesint PA12, Materialise creates a path towards eliminating waste in 3D printing.

 

“As we enter the fourth decade of 3D printing, the question is not whether 3D printing is a sustainable manufacturing technology. The question becomes: what can we do to make 3D printing more sustainable?” said Fried Vancraen, CEO of Materialise.


1_WEB.jpg

Bluesint PA12 parts printed with 100% re-used powder.


With Laser Sintering, the second most commonly used 3D printing technology, up to 50% of the powder becomes waste. The potential to recycle used powder is limited and 3D printing with only used powder creates surface problems that make the 3D printed object unsuitable for most applications.

 

Materialise has announced Bluesint PA12, a manufacturing innovation that makes it possible to print with up to 100% re-used powder, drastically increasing the resource efficiency of Laser Sintering.

 

With Bluesint PA12, powder that would normally be wasted can be given a second life to make new parts. Parts printed with Bluesint PA12 have similar mechanical properties, allowing users to make a choice not only based on technical specifications but also on the environmental impact.

 

“With Bluesint PA12 we are able to significantly reduce powder waste,” noted Jurgen Laudus, VP and General Manager of Materialise Manufacturing. “Bluesint PA12 represents a major step towards making 3D printing more sustainable and is an example of how we empower our customers to make a choice for sustainability.”

 

The search for a more sustainable 3D printing process started seven years ago in the Materialise research lab in Leuven, Belgium. The problem with Laser Sintering is that 3D printing with only used powder - residual powder from a previous 3D print process - creates a surface texture problem called the “orange peel” effect, which makes the printed object largely unusable.

 

The orange peel effect is caused by shrinking that occurs when the powder cools down between two consecutive sintering processes. The existing solution is to mix used powder with fresh powder, which is clearly not sustainable.

 

By using a 3D printer with multiple lasers, Materialise engineers were able use one laser for sintering the powder and a second laser to keep the powder above a certain temperature threshold. By preventing the powder from cooling down between two layers, they prevented the shrinking process that causes the orange peel effect. The result is a printed object with similar mechanical and visual properties but printed with 100% recycled powder, drastically reducing waste.

 

Over the course of 2021, Materialise plans to have several Laser Sintering machines running Bluesint PA12. In the start-up phase alone the company aims to re-use more than five tons of material that would normally become waste.

 Like 丨  {{details_info.likes_count}}

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2020-12-23 Editor :JK

Materialise NV, a leading company in 3D technology solutions in the industrial and medical markets, has presented Bluesint PA12, a material innovation that makes it possible to 3D print with up to 100% re-used powder.

 

3D printing is often considered a sustainable manufacturing technology but a new Lifecycle Analysis indicates that for large series of identical products, 3D printing has a bigger environmental impact compared to a conventional production technology. With the announcement of Bluesint PA12, Materialise creates a path towards eliminating waste in 3D printing.

 

“As we enter the fourth decade of 3D printing, the question is not whether 3D printing is a sustainable manufacturing technology. The question becomes: what can we do to make 3D printing more sustainable?” said Fried Vancraen, CEO of Materialise.


1_WEB.jpg

Bluesint PA12 parts printed with 100% re-used powder.


With Laser Sintering, the second most commonly used 3D printing technology, up to 50% of the powder becomes waste. The potential to recycle used powder is limited and 3D printing with only used powder creates surface problems that make the 3D printed object unsuitable for most applications.

 

Materialise has announced Bluesint PA12, a manufacturing innovation that makes it possible to print with up to 100% re-used powder, drastically increasing the resource efficiency of Laser Sintering.

 

With Bluesint PA12, powder that would normally be wasted can be given a second life to make new parts. Parts printed with Bluesint PA12 have similar mechanical properties, allowing users to make a choice not only based on technical specifications but also on the environmental impact.

 

“With Bluesint PA12 we are able to significantly reduce powder waste,” noted Jurgen Laudus, VP and General Manager of Materialise Manufacturing. “Bluesint PA12 represents a major step towards making 3D printing more sustainable and is an example of how we empower our customers to make a choice for sustainability.”

 

The search for a more sustainable 3D printing process started seven years ago in the Materialise research lab in Leuven, Belgium. The problem with Laser Sintering is that 3D printing with only used powder - residual powder from a previous 3D print process - creates a surface texture problem called the “orange peel” effect, which makes the printed object largely unusable.

 

The orange peel effect is caused by shrinking that occurs when the powder cools down between two consecutive sintering processes. The existing solution is to mix used powder with fresh powder, which is clearly not sustainable.

 

By using a 3D printer with multiple lasers, Materialise engineers were able use one laser for sintering the powder and a second laser to keep the powder above a certain temperature threshold. By preventing the powder from cooling down between two layers, they prevented the shrinking process that causes the orange peel effect. The result is a printed object with similar mechanical and visual properties but printed with 100% recycled powder, drastically reducing waste.

 

Over the course of 2021, Materialise plans to have several Laser Sintering machines running Bluesint PA12. In the start-up phase alone the company aims to re-use more than five tons of material that would normally become waste.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

3D printing
Evonik unveils carbon black embedded 3D-printable powders
 2024-11-20
3D printing
Lubrizol TPU supports 3D-printed cycling shoes
 2024-11-14
3D printing
AIMPLAS and ARBURG partner in research of additive manufacturing
 2024-11-04
3D printing
Elkem extends silicone solutions for 3D printing
 2024-10-23
3D printing
3D printing: Collaboration to develop material with chemically recycled PA6 and CNF
 2024-10-18
3D printing
Pre-clinical study for 3D-printed regenerative breast implants
 2024-08-28

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

3D printing with up to 100% re-used powder

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube