Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Röhm and partners establishes Europe-wide alliance for recycling PMMA

Novolex to acquire Pactiv Evergreen with US$6.7 billion

Covestro to invest pilot plant for chemically recycling of elastomers

Products

Dow enhances comfort experience in slabstock foam with cutting-edge polyether polyol

Clariant introduces new Plus series syngas catalysts to market

TMA AUTOMATION begins construction of office and production building in Poland

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Recycling and Circular Economy

CHINAPLAS

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

Fakuma 2024 Highlights

CHINA FOCUS

K 2022 FOCUS

News Videos

strap belt winder | strap band winder | packing belt winder | packing band winder

Discover how Star Plastics processes recycled plastics

(Interview) CPCIF: How to achieve circular and economical

Conference Videos

【Mandarin session:Webinar playback】BASF:Tinuvin® NOR® 211 AR - High performing and value-in-use NOR® HALS® that can resist high levels of UV light, heat and acids

[Webinar playback] SABIC Webinar : Enabling a Circular Economy for Plastics Together

【Mandarin session:Webinar playback】The new generation application of Siriusvision inspection technology in the printing industry

Corporate/Product Videos

ENGEL adheres to the concept of circular economy, focuses on new plastics technology, and we are committed to provide our customers with suitable and high efficient injection molding solutions.

LSP -1600HDPE Three layer Solid Pipe Coextrusion Line

Zhuhai CPT Precision Mold Co.,LTD

Exhibition

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > E&E

Invention of fully recyclable printed electronics aims to ease wastes

Source:Adsale Plastics Network Date :2021-04-30 Editor :JK

Engineers at Duke University have developed the world’s first fully recyclable printed electronics. By demonstrating a crucial and relatively complex computer component — the transistor — created with three carbon-based inks, the researchers hope to inspire a new generation of recyclable electronics to help fight the growing global epidemic of electronic waste.

 

According to a United Nations estimate, less than a quarter of the millions of pounds of electronics thrown away each year is recycled. And the problem is only going to get worse as the world upgrades to 5G devices and the Internet of Things (IoT) continues to expand.

 

Part of the problem is that electronic devices are difficult to recycle. While scraps of copper, aluminum and steel can be recycled, the silicon chips at the heart of the devices cannot.


1_web.jpg

A 3D rendering of the first fully recyclable, printed transistor.


In the new study, Franklin, the Addy Professor of Electrical and Computer Engineering at Duke, and his laboratory demonstrate a completely recyclable, fully functional transistor made out of three carbon-based inks that can be easily printed onto paper or other flexible, environmentally friendly surfaces. Carbon nanotubes and graphene inks are used for the semiconductors and conductors, respectively.

 

While these materials are not new to the world of printed electronics, Franklin stated, the path to recyclability was opened with the development of a wood-derived insulating dielectric ink called nanocellulose.

 

The researchers developed a method for suspending crystals of nanocellulose that were extracted from wood fibers that — with the sprinkling of a little table salt — yields an ink that performs admirably as an insulator in their printed transistors.

 

Using the three inks in an aerosol jet printer at room temperature, the team shows that their all-carbon transistors perform well enough for use in a wide variety of applications, even six months after the initial printing.


2_web.jpg

Researchers test a biosensor made out of fully recyclable, printed electronics.


The team then demonstrates just how recyclable their design is. By submerging their devices in a series of baths, gently vibrating them with sound waves and centrifuging the resulting solution, the carbon nanotubes and graphene are sequentially recovered with an average yield of nearly 100%.

 

Both materials can then be reused in the same printing process while losing very little of their performance viability. And because the nanocellulose is made from wood, it can simply be recycled along with the paper it was printed on.

 

Compared to a resistor or capacitor, a transistor is a relatively complex computer component used in devices such as power control or logic circuits and various sensors.

 

Franklin explained that, by demonstrating a fully recyclable, multifunctional printed transistor first, he hopes to make a first step toward the technology being commercially pursued for simple devices.

 

For example, Franklin said he could imagine the technology being used in a large building needing thousands of simple environmental sensors to monitor its energy use or customized biosensing patches for tracking medical conditions.

 

The work appears online April 26 in the journal Nature Electronics. It was supported by the Department of Defense Congressionally Directed Medical Research Program (W81XWH-17-2-0045), the National Institutes of Health (1R01HL146849) and the Air Force Office of Scientific Research (FA9550-18-1-0222).

 Like 丨  {{details_info.likes_count}}
Recycling
E&E
 SACMI (SHANGHAI) MACHINERY EQUIPMENT CO., LTD.      
 Quanzhou Juyuan Plastic Machinery Co.,Ltd.      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2021-04-30 Editor :JK

Engineers at Duke University have developed the world’s first fully recyclable printed electronics. By demonstrating a crucial and relatively complex computer component — the transistor — created with three carbon-based inks, the researchers hope to inspire a new generation of recyclable electronics to help fight the growing global epidemic of electronic waste.

 

According to a United Nations estimate, less than a quarter of the millions of pounds of electronics thrown away each year is recycled. And the problem is only going to get worse as the world upgrades to 5G devices and the Internet of Things (IoT) continues to expand.

 

Part of the problem is that electronic devices are difficult to recycle. While scraps of copper, aluminum and steel can be recycled, the silicon chips at the heart of the devices cannot.


1_web.jpg

A 3D rendering of the first fully recyclable, printed transistor.


In the new study, Franklin, the Addy Professor of Electrical and Computer Engineering at Duke, and his laboratory demonstrate a completely recyclable, fully functional transistor made out of three carbon-based inks that can be easily printed onto paper or other flexible, environmentally friendly surfaces. Carbon nanotubes and graphene inks are used for the semiconductors and conductors, respectively.

 

While these materials are not new to the world of printed electronics, Franklin stated, the path to recyclability was opened with the development of a wood-derived insulating dielectric ink called nanocellulose.

 

The researchers developed a method for suspending crystals of nanocellulose that were extracted from wood fibers that — with the sprinkling of a little table salt — yields an ink that performs admirably as an insulator in their printed transistors.

 

Using the three inks in an aerosol jet printer at room temperature, the team shows that their all-carbon transistors perform well enough for use in a wide variety of applications, even six months after the initial printing.


2_web.jpg

Researchers test a biosensor made out of fully recyclable, printed electronics.


The team then demonstrates just how recyclable their design is. By submerging their devices in a series of baths, gently vibrating them with sound waves and centrifuging the resulting solution, the carbon nanotubes and graphene are sequentially recovered with an average yield of nearly 100%.

 

Both materials can then be reused in the same printing process while losing very little of their performance viability. And because the nanocellulose is made from wood, it can simply be recycled along with the paper it was printed on.

 

Compared to a resistor or capacitor, a transistor is a relatively complex computer component used in devices such as power control or logic circuits and various sensors.

 

Franklin explained that, by demonstrating a fully recyclable, multifunctional printed transistor first, he hopes to make a first step toward the technology being commercially pursued for simple devices.

 

For example, Franklin said he could imagine the technology being used in a large building needing thousands of simple environmental sensors to monitor its energy use or customized biosensing patches for tracking medical conditions.

 

The work appears online April 26 in the journal Nature Electronics. It was supported by the Department of Defense Congressionally Directed Medical Research Program (W81XWH-17-2-0045), the National Institutes of Health (1R01HL146849) and the Air Force Office of Scientific Research (FA9550-18-1-0222).

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

E&E
DuPont and Zhen Ding to advance PCBs technology
 2024-11-01
E&E
PCR plastic incorporated in Fairphone 5 detachable back cover
 2024-10-09
E&E
AkzoNobel offers coatings for consumer electronics with PCR plastics
 2024-10-02
E&E
Dow launches PCR plastics for cable jackets
 2024-09-16
E&E
WACKER develops specialty silane for microchips
 2024-09-11
E&E
SABIC and Lubrizol jointly develop materials for consumer electronics
 2024-08-23

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Invention of fully recyclable printed electronics aims to ease wastes

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube