Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Röhm and partners establishes Europe-wide alliance for recycling PMMA

Novolex to acquire Pactiv Evergreen with US$6.7 billion

Covestro to invest pilot plant for chemically recycling of elastomers

Products

Dow enhances comfort experience in slabstock foam with cutting-edge polyether polyol

Clariant introduces new Plus series syngas catalysts to market

TMA AUTOMATION begins construction of office and production building in Poland

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Recycling and Circular Economy

CHINAPLAS

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

Fakuma 2024 Highlights

CHINA FOCUS

K 2022 FOCUS

News Videos

strap belt winder | strap band winder | packing belt winder | packing band winder

Discover how Star Plastics processes recycled plastics

(Interview) CPCIF: How to achieve circular and economical

Conference Videos

【Mandarin session:Webinar playback】BASF:Tinuvin® NOR® 211 AR - High performing and value-in-use NOR® HALS® that can resist high levels of UV light, heat and acids

[Webinar playback] SABIC Webinar : Enabling a Circular Economy for Plastics Together

【Mandarin session:Webinar playback】The new generation application of Siriusvision inspection technology in the printing industry

Corporate/Product Videos

ENGEL adheres to the concept of circular economy, focuses on new plastics technology, and we are committed to provide our customers with suitable and high efficient injection molding solutions.

LSP -1600HDPE Three layer Solid Pipe Coextrusion Line

Zhuhai CPT Precision Mold Co.,LTD

Exhibition

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > 3D printing

Arburg’s freeformer supports development of 3D-printed sensor casing

Source:Adsale Plastics Network Date :2021-08-03 Editor :JK

3D printing is becoming increasingly important in industrial manufacturing. It not only makes it possible to produce very complex shapes that would otherwise be virtually impossible to generate using conventional processes, but also enables small batch numbers to be produced on a cost-effective basis.

 

However, the integration of electronic components and the production of customized sensors presented a challenge. Now, together with the plastics processing machine manufacturer Arburg and automation specialist Balluff, Fraunhofer IPA has achieved a breakthrough.

 

Sensors in individualized form are interesting for tasks in automation technology, as they can be used flexibly for a variety of applications. Inductive proximity sensors are available in cylindrical metal casings in which a coil, a circuit board and a plug are installed in a fixed configuration - a standard component with a fixed geometry. In automation technology, inductive proximity sensors are used in great numbers for non-contact detection of metal objects.

 

In industrial applications, they can not only register the proximity of a component, but also at what distance it is located. However, due to the shape of the casings, inductive proximity sensors for integration in specific environments - robotic arm gripper fingers, for example - had not yet been developed.

 

The question therefore arose: Why not print the sensor casing in plastic so that it can be manufactured in any shape? This is exactly what a research team from the Centre for Additive Production at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA has now achieved. The team was supported by colleagues from Arburg and Balluff.


1_web.jpg

Demonstration model of customized sensor at different production stages: CAD concept (top left), after integration of the electronic components (top right) and as a finished demonstration model (bottom).


A plastic with high dielectric strength and flame-retardant properties was required for the sensor casing. The experts opted for semi-crystalline plastic polybutylene terephthalate (PBT), which is used as standard injection molding material for the production of electronic casings. However, this type of material had not yet been used for 3D printing, necessitating work of a pioneering nature.

 

Conductor tracks in 3D printing

 

The plastic was fed in granulate form into a “freeformer”, Arburg’s industrial additive manufacturing system, which uses a material preparation unit with a special plasticizing screw. After melting the standard granulate, the freeforming process, which uses no molds, followed: A high frequency nozzle closure discharged tiny plastic droplets, which could be precisely positioned with the aid of a movable part carrier.

 

In this way, the freeformer created three-dimensional components with cavities layer by layer, into which components could be inserted during the printing process. To make this possible, the freeformer automatically interrupted the process at each respective layer, so that the coil, circuit board and plug could be integrated precisely.

 

In a separate process, a dispenser was then used to produce the silver conductor tracks inside the casing. To complete the process, all that was needed was to overprint the cavities and then put them in polyurethane.

 

The team produced more than 30 demonstration models of customized sensors in this way and then put them through their paces: the components had to be able to withstand temperature changes and vibrations, and they had to be waterproof and pass an electrical insulation test. By optimizing the design and manufacturing process, the tests were ultimately completed successfully.

 

The “Electronic Function Integration in Additively Manufactured Components” research project ran for eighteen months. Stefan Pfeffer, who led the project at Fraunhofer IPA, is currently working with Arburg on research into how conductive plastics can also be used in the future to tap into additional application areas.

 Like 丨  {{details_info.likes_count}}
ARBURG

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2021-08-03 Editor :JK

3D printing is becoming increasingly important in industrial manufacturing. It not only makes it possible to produce very complex shapes that would otherwise be virtually impossible to generate using conventional processes, but also enables small batch numbers to be produced on a cost-effective basis.

 

However, the integration of electronic components and the production of customized sensors presented a challenge. Now, together with the plastics processing machine manufacturer Arburg and automation specialist Balluff, Fraunhofer IPA has achieved a breakthrough.

 

Sensors in individualized form are interesting for tasks in automation technology, as they can be used flexibly for a variety of applications. Inductive proximity sensors are available in cylindrical metal casings in which a coil, a circuit board and a plug are installed in a fixed configuration - a standard component with a fixed geometry. In automation technology, inductive proximity sensors are used in great numbers for non-contact detection of metal objects.

 

In industrial applications, they can not only register the proximity of a component, but also at what distance it is located. However, due to the shape of the casings, inductive proximity sensors for integration in specific environments - robotic arm gripper fingers, for example - had not yet been developed.

 

The question therefore arose: Why not print the sensor casing in plastic so that it can be manufactured in any shape? This is exactly what a research team from the Centre for Additive Production at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA has now achieved. The team was supported by colleagues from Arburg and Balluff.


1_web.jpg

Demonstration model of customized sensor at different production stages: CAD concept (top left), after integration of the electronic components (top right) and as a finished demonstration model (bottom).


A plastic with high dielectric strength and flame-retardant properties was required for the sensor casing. The experts opted for semi-crystalline plastic polybutylene terephthalate (PBT), which is used as standard injection molding material for the production of electronic casings. However, this type of material had not yet been used for 3D printing, necessitating work of a pioneering nature.

 

Conductor tracks in 3D printing

 

The plastic was fed in granulate form into a “freeformer”, Arburg’s industrial additive manufacturing system, which uses a material preparation unit with a special plasticizing screw. After melting the standard granulate, the freeforming process, which uses no molds, followed: A high frequency nozzle closure discharged tiny plastic droplets, which could be precisely positioned with the aid of a movable part carrier.

 

In this way, the freeformer created three-dimensional components with cavities layer by layer, into which components could be inserted during the printing process. To make this possible, the freeformer automatically interrupted the process at each respective layer, so that the coil, circuit board and plug could be integrated precisely.

 

In a separate process, a dispenser was then used to produce the silver conductor tracks inside the casing. To complete the process, all that was needed was to overprint the cavities and then put them in polyurethane.

 

The team produced more than 30 demonstration models of customized sensors in this way and then put them through their paces: the components had to be able to withstand temperature changes and vibrations, and they had to be waterproof and pass an electrical insulation test. By optimizing the design and manufacturing process, the tests were ultimately completed successfully.

 

The “Electronic Function Integration in Additively Manufactured Components” research project ran for eighteen months. Stefan Pfeffer, who led the project at Fraunhofer IPA, is currently working with Arburg on research into how conductive plastics can also be used in the future to tap into additional application areas.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

3D printing
Evonik unveils carbon black embedded 3D-printable powders
 2024-11-20
3D printing
Lubrizol TPU supports 3D-printed cycling shoes
 2024-11-14
3D printing
AIMPLAS and ARBURG partner in research of additive manufacturing
 2024-11-04
3D printing
Elkem extends silicone solutions for 3D printing
 2024-10-23
3D printing
3D printing: Collaboration to develop material with chemically recycled PA6 and CNF
 2024-10-18
3D printing
Pre-clinical study for 3D-printed regenerative breast implants
 2024-08-28

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Arburg’s freeformer supports development of 3D-printed sensor casing

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube