Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Röhm and partners establishes Europe-wide alliance for recycling PMMA

Novolex to acquire Pactiv Evergreen with US$6.7 billion

Covestro to invest pilot plant for chemically recycling of elastomers

Products

Dow enhances comfort experience in slabstock foam with cutting-edge polyether polyol

Clariant introduces new Plus series syngas catalysts to market

TMA AUTOMATION begins construction of office and production building in Poland

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Recycling and Circular Economy

CHINAPLAS

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

Fakuma 2024 Highlights

CHINA FOCUS

K 2022 FOCUS

News Videos

strap belt winder | strap band winder | packing belt winder | packing band winder

Discover how Star Plastics processes recycled plastics

(Interview) CPCIF: How to achieve circular and economical

Conference Videos

【Mandarin session:Webinar playback】BASF:Tinuvin® NOR® 211 AR - High performing and value-in-use NOR® HALS® that can resist high levels of UV light, heat and acids

[Webinar playback] SABIC Webinar : Enabling a Circular Economy for Plastics Together

【Mandarin session:Webinar playback】The new generation application of Siriusvision inspection technology in the printing industry

Corporate/Product Videos

ENGEL adheres to the concept of circular economy, focuses on new plastics technology, and we are committed to provide our customers with suitable and high efficient injection molding solutions.

LSP -1600HDPE Three layer Solid Pipe Coextrusion Line

Zhuhai CPT Precision Mold Co.,LTD

Exhibition

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Automotive

LANXESS presents demonstrator of all-plastic housing for EV battery

Source:Adsale Plastics Network Date :2021-12-20 Editor :JK

LANXESS and Kautex Textron GmbH & Co. KG, a Textron Inc. company, have been collaborating for several years to research whether battery housings for electric vehicles can be designed and manufactured from technical thermoplastics. Recently, they have developed a near-series technology demonstrator in a feasibility study.

 

With a length and width of around 1,400 millimeters each, the system is a technically sophisticated, large-format all-plastic housing part with a weight in the mid-double-digit kilogram range.

 

The goal of the project was to demonstrate the advantages of thermoplastics over metals in terms of weight and cost reduction, functional integration and electrical insulation behavior.

 

“As a first step, we have completely dispensed with the use of metallic reinforcement structures while proving we can commercially produce these complex large components,” Felix Haas, Director Product Development at Kautex Textron, explained.


1_web.jpg

The near-series technology demonstrator has a length and width of around 1,400 mm each.


“Going forward, Kautex and LANXESS want to use the results of the cooperation to enter into development projects for series production with automotive manufacturers,” said Dr. Christopher Hoefs, Project Manager e-Powertrain at LANXESS.

 

The demonstrator was developed based on the battery housing of a C-segment electric vehicle. It consists of a housing tray with crash structure, a housing cover and an underrun (underbody) protection. The housing components can be produced in a single-stage Direct Long Fiber Thermoplastic (D-LFT) molding process. LANXESS has optimized Durethan B24CMH2.0 as the material for the D-LFT molding compound. Kautex Textron compounds the PA6 for the process with glass fiber rovings.

 

The local reinforcement of the housing structure is carried out using continuous fiber-reinforced thermoplastic composites of the Tepex dynalite brand from LANXESS. “The process enables shorter and thus more economical cycle times than the processes in which steel or aluminium are processed,” Felix Haas stated.

 

Also, housings for high-voltage batteries are now primarily made of extruded steel or aluminium profiles. Depending on the vehicle class, the housing length and widths can be well over 2,000 or 1,500 millimeters, respectively.


2_web.jpg

The demonstrator was developed based on the battery housing of a C-segment electric vehicle. It consists of a housing tray with crash structure, a housing cover and an underrun (underbody) protection.


The size, the number of components and the numerous manufacturing and assembly steps make metal housings very cost-intensive. For example, complex structures made from strand press profiles require many secondary work steps such as welding, punching and riveting. In addition, the metallic components must be protected against corrosion in an additional process step by cathodic dip coating.

 

“Plastics, on the other hand, can fully exploit their design freedom. By integrating functions such as fasteners and thermal management components, the number of individual components of a battery housing can be greatly reduced. This simplifies assembly and logistical effort, which reduces production costs,” said Dr. Christopher Hoefs.

 

Plastics are also corrosion-resistant and electrically insulating. The latter ensures, for example, that there is a reduced risk of the system short-circuiting. The low density of plastics and their potential for lightweight construction lead to significantly lighter housings, which benefits, among other things, the range of electric vehicles.

 

High-voltage battery housings must meet a variety of highly demanding technical requirements. For example, they must be stiff and strong and yet be able to absorb a significant amount of energy in the event of a crash. This is tested via mechanical shock- and crush tests. The housings must also be flame-retardant in the event of a vehicle fire or thermal run-away of the electrical cells. Finally, the housings must be integrated into the vehicle structure.

 

“We continue to work together on optimizing the production and structural design of the components. The aim is to carry out the majority of the development work virtually, in order to save costs in prototype design and to shorten the time to market of future series components,” Dr. Christopher Hoefs added.

 Like 丨  {{details_info.likes_count}}
Lanxess

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2021-12-20 Editor :JK

LANXESS and Kautex Textron GmbH & Co. KG, a Textron Inc. company, have been collaborating for several years to research whether battery housings for electric vehicles can be designed and manufactured from technical thermoplastics. Recently, they have developed a near-series technology demonstrator in a feasibility study.

 

With a length and width of around 1,400 millimeters each, the system is a technically sophisticated, large-format all-plastic housing part with a weight in the mid-double-digit kilogram range.

 

The goal of the project was to demonstrate the advantages of thermoplastics over metals in terms of weight and cost reduction, functional integration and electrical insulation behavior.

 

“As a first step, we have completely dispensed with the use of metallic reinforcement structures while proving we can commercially produce these complex large components,” Felix Haas, Director Product Development at Kautex Textron, explained.


1_web.jpg

The near-series technology demonstrator has a length and width of around 1,400 mm each.


“Going forward, Kautex and LANXESS want to use the results of the cooperation to enter into development projects for series production with automotive manufacturers,” said Dr. Christopher Hoefs, Project Manager e-Powertrain at LANXESS.

 

The demonstrator was developed based on the battery housing of a C-segment electric vehicle. It consists of a housing tray with crash structure, a housing cover and an underrun (underbody) protection. The housing components can be produced in a single-stage Direct Long Fiber Thermoplastic (D-LFT) molding process. LANXESS has optimized Durethan B24CMH2.0 as the material for the D-LFT molding compound. Kautex Textron compounds the PA6 for the process with glass fiber rovings.

 

The local reinforcement of the housing structure is carried out using continuous fiber-reinforced thermoplastic composites of the Tepex dynalite brand from LANXESS. “The process enables shorter and thus more economical cycle times than the processes in which steel or aluminium are processed,” Felix Haas stated.

 

Also, housings for high-voltage batteries are now primarily made of extruded steel or aluminium profiles. Depending on the vehicle class, the housing length and widths can be well over 2,000 or 1,500 millimeters, respectively.


2_web.jpg

The demonstrator was developed based on the battery housing of a C-segment electric vehicle. It consists of a housing tray with crash structure, a housing cover and an underrun (underbody) protection.


The size, the number of components and the numerous manufacturing and assembly steps make metal housings very cost-intensive. For example, complex structures made from strand press profiles require many secondary work steps such as welding, punching and riveting. In addition, the metallic components must be protected against corrosion in an additional process step by cathodic dip coating.

 

“Plastics, on the other hand, can fully exploit their design freedom. By integrating functions such as fasteners and thermal management components, the number of individual components of a battery housing can be greatly reduced. This simplifies assembly and logistical effort, which reduces production costs,” said Dr. Christopher Hoefs.

 

Plastics are also corrosion-resistant and electrically insulating. The latter ensures, for example, that there is a reduced risk of the system short-circuiting. The low density of plastics and their potential for lightweight construction lead to significantly lighter housings, which benefits, among other things, the range of electric vehicles.

 

High-voltage battery housings must meet a variety of highly demanding technical requirements. For example, they must be stiff and strong and yet be able to absorb a significant amount of energy in the event of a crash. This is tested via mechanical shock- and crush tests. The housings must also be flame-retardant in the event of a vehicle fire or thermal run-away of the electrical cells. Finally, the housings must be integrated into the vehicle structure.

 

“We continue to work together on optimizing the production and structural design of the components. The aim is to carry out the majority of the development work virtually, in order to save costs in prototype design and to shorten the time to market of future series components,” Dr. Christopher Hoefs added.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

Automotive
Li Auto celebrates inhouse-developed CFRT rolls off production line
 2024-12-17
Automotive
First official drone test for petroleum production in Thailand
 2024-12-16
Automotive
Survey: Concerns on fully autonomous vehicles from global consumers
 2024-12-13
Automotive
PLEXIGLAS Softlight used in front emblem of Spanish automaker's new model
 2024-12-12
Automotive
BASF and Bosch collaborate in automotive refinish market
 2024-12-12
Automotive
Collaboration develops industry-first closed-loop recycled PU into new seat foam
 2024-12-10

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

LANXESS presents demonstrator of all-plastic housing for EV battery

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube