Search History
Clear History
{{item.search_key}}
Hot Searches
Change
{{item.name}}
{{item.english_name}}
Subscribe eNews
Once A Week Once Every Two Weeks
{{sum}}
Login Register

Applications

Röhm and partners establishes Europe-wide alliance for recycling PMMA

Novolex to acquire Pactiv Evergreen with US$6.7 billion

Covestro to invest pilot plant for chemically recycling of elastomers

Products

Dow enhances comfort experience in slabstock foam with cutting-edge polyether polyol

Clariant introduces new Plus series syngas catalysts to market

TMA AUTOMATION begins construction of office and production building in Poland

Activities

  • Round Table at Fakuma 2023: “Plastic – Recyclable Rather Than Problem Material!”

  • ArabPlast 2023 – The Success Journey Continues………..

  • GREAT NEWS! INAPA 2023 IS COMING BACK 24 - 26 May 2023 at JIExpo Jakarta, Indonesia

Pictorial

Industry Topic

ASEAN: The Next Manufacturing Hub

Innovative and Sustainable Packaging

Recycling and Circular Economy

CHINAPLAS

CHINAPLAS 2024 Focus

CHINAPLAS 2023 Focus

Exhibition Topic

Fakuma 2024 Highlights

CHINA FOCUS

K 2022 FOCUS

News Videos

strap belt winder | strap band winder | packing belt winder | packing band winder

Discover how Star Plastics processes recycled plastics

(Interview) CPCIF: How to achieve circular and economical

Conference Videos

【Mandarin session:Webinar playback】BASF:Tinuvin® NOR® 211 AR - High performing and value-in-use NOR® HALS® that can resist high levels of UV light, heat and acids

[Webinar playback] SABIC Webinar : Enabling a Circular Economy for Plastics Together

【Mandarin session:Webinar playback】The new generation application of Siriusvision inspection technology in the printing industry

Corporate/Product Videos

ENGEL adheres to the concept of circular economy, focuses on new plastics technology, and we are committed to provide our customers with suitable and high efficient injection molding solutions.

LSP -1600HDPE Three layer Solid Pipe Coextrusion Line

Zhuhai CPT Precision Mold Co.,LTD

Exhibition

Playback TECHHUB@CPRJ Live Streaming for CHINAPLAS

Events

Playback 5th Edition CHINAPLAS x CPRJ Plastics Recycling and Circular Economy Conference and Showcase

Home > News > Recycling

Asahi Kasei develops technology for recycling continuous carbon fiber

Source:Adsale Plastics Network Date :2023-01-30 Editor :JK

Asahi Kasei has developed basic technology for recycling continuous carbon fiber under a project “Circular Economy Program for the Automotive Carbon Fiber” (the Project), together with National Institute of Technology, Kitakyushu College, and Tokyo University of Science.

 

The Project was supported by the Feasibility Study Program on Energy and New Environmental Technology, of the New Energy and Industrial Technology Development Organization (NEDO) from fiscal 2021 to 2022.

 

It was adopted in May 2021 by the NEDO Feasibility Study Program on Energy and New Environmental Technology, which aims to discover technology seeds needed for medium- to long-term solutions in the field of energy and the environment, including energy conservation, new energy, and CO2 reduction, that are unlike existing technologies and can be applied in future national projects contributing to dramatically increased energy efficiency and achievement of a low-carbon society.


1.jpg

Characteristics of the Project.


The Project, aims for practical application of a recycling system where carbon fiber derived from carbon fiber reinforced plastic (CFRP) or carbon fiber reinforced thermoplastic (CFRTP) discarded from automobiles is reused as CFRP or CFRTP for automobiles.

 

By recycling carbon fiber discarded from automobiles as continuous carbon fiber, high-quality and inexpensive CFRTP can be provided, resulting in vehicle weight reduction and energy saving. This is also expected to economically benefit and strengthen the competitiveness of Japan’s leading carbon fiber and automobile industries.

 

The conventional recycling technology recycles carbon fiber as chopped carbon fiber. However, as chopped carbon fiber differs greatly from original continuous carbon fiber, it was necessary to develop individual composite technology.

 

In contrast, the Project enables continuous carbon fiber recycling, allowing existing composite technology to be used, making it possible to achieve closed-loop recycling of the circular economy.


2.jpg

Electrolyzed sulfuric acid method.


An “electrolyzed sulfuric acid method” was developed for the Project. The “electrolyzed sulfuric acid method” is a technology that uses oxidative active species generated by electrolyzing sulfuric acid to decompose the resin components of CFRP/CFRTP and extract and recycle carbon fibers.

 

This technology has three features:

  • It can decompose any kind of resin

  • Strength of the recycled carbon fiber does not decrease

  • Carbon fiber can be recycled as continuous fiber


3.jpg

Recycled continuous carbon fiber and filament winding molding.


Basic technology was developed for recycling continuous carbon fiber from small commercially available CFRP tanks for scuba diving. The recycled continuous carbon fiber has no “twisting” or “fluffing” and can be handled in the same way as new carbon fiber. This enables a tank-to-tank circular economy through the repeated use of filament winding.

 

Asahi Kasei is also developing CFRTP-UD tape (unidirectional tape, a unidirectional continuous fiber reinforced material) using the recycled continuous carbon fiber and Leona polyamide resin.


4.jpg

CFRTP-UD tape using recycled continuous carbon fiber and Leona polyamide resin.


Having higher strength than metal, CFRTP-UD tape is expected to be applied to automobile frames and bodies, further enabling the recycling of automobile parts into other automobile parts.

 

Moving forward, Asahi Kasei will perform demonstrations and develop the business, aiming for practical application around 2030.

 Like 丨  {{details_info.likes_count}}
Recycling
Carbon fiber
 SACMI (SHANGHAI) MACHINERY EQUIPMENT CO., LTD.      
 Quanzhou Juyuan Plastic Machinery Co.,Ltd.      

The content you're trying to view is for members only. If you are currently a member, Please login to access this content.   Login

Source:Adsale Plastics Network Date :2023-01-30 Editor :JK

Asahi Kasei has developed basic technology for recycling continuous carbon fiber under a project “Circular Economy Program for the Automotive Carbon Fiber” (the Project), together with National Institute of Technology, Kitakyushu College, and Tokyo University of Science.

 

The Project was supported by the Feasibility Study Program on Energy and New Environmental Technology, of the New Energy and Industrial Technology Development Organization (NEDO) from fiscal 2021 to 2022.

 

It was adopted in May 2021 by the NEDO Feasibility Study Program on Energy and New Environmental Technology, which aims to discover technology seeds needed for medium- to long-term solutions in the field of energy and the environment, including energy conservation, new energy, and CO2 reduction, that are unlike existing technologies and can be applied in future national projects contributing to dramatically increased energy efficiency and achievement of a low-carbon society.


1.jpg

Characteristics of the Project.


The Project, aims for practical application of a recycling system where carbon fiber derived from carbon fiber reinforced plastic (CFRP) or carbon fiber reinforced thermoplastic (CFRTP) discarded from automobiles is reused as CFRP or CFRTP for automobiles.

 

By recycling carbon fiber discarded from automobiles as continuous carbon fiber, high-quality and inexpensive CFRTP can be provided, resulting in vehicle weight reduction and energy saving. This is also expected to economically benefit and strengthen the competitiveness of Japan’s leading carbon fiber and automobile industries.

 

The conventional recycling technology recycles carbon fiber as chopped carbon fiber. However, as chopped carbon fiber differs greatly from original continuous carbon fiber, it was necessary to develop individual composite technology.

 

In contrast, the Project enables continuous carbon fiber recycling, allowing existing composite technology to be used, making it possible to achieve closed-loop recycling of the circular economy.


2.jpg

Electrolyzed sulfuric acid method.


An “electrolyzed sulfuric acid method” was developed for the Project. The “electrolyzed sulfuric acid method” is a technology that uses oxidative active species generated by electrolyzing sulfuric acid to decompose the resin components of CFRP/CFRTP and extract and recycle carbon fibers.

 

This technology has three features:

  • It can decompose any kind of resin

  • Strength of the recycled carbon fiber does not decrease

  • Carbon fiber can be recycled as continuous fiber


3.jpg

Recycled continuous carbon fiber and filament winding molding.


Basic technology was developed for recycling continuous carbon fiber from small commercially available CFRP tanks for scuba diving. The recycled continuous carbon fiber has no “twisting” or “fluffing” and can be handled in the same way as new carbon fiber. This enables a tank-to-tank circular economy through the repeated use of filament winding.

 

Asahi Kasei is also developing CFRTP-UD tape (unidirectional tape, a unidirectional continuous fiber reinforced material) using the recycled continuous carbon fiber and Leona polyamide resin.


4.jpg

CFRTP-UD tape using recycled continuous carbon fiber and Leona polyamide resin.


Having higher strength than metal, CFRTP-UD tape is expected to be applied to automobile frames and bodies, further enabling the recycling of automobile parts into other automobile parts.

 

Moving forward, Asahi Kasei will perform demonstrations and develop the business, aiming for practical application around 2030.

全文内容需要订阅后才能阅读哦~
立即订阅

Leave Comment

Submit

All Comments

No Comment

{{VueShowUserOrCompany(itme.user)}}

{{ toolTimes(itme.updated_at,'s') }}

{{itme.body}}

Reply   
Submit
{{VueShowUserOrCompany(itmes.user)}} {{ toolTimes(itmes.updated_at,'s') }} Reply

{{itmes.body}}

Submit

Recommended Articles

Recycling
Röhm and partners establishes Europe-wide alliance for recycling PMMA
 2024-12-20
Recycling
Covestro to invest pilot plant for chemically recycling of elastomers
 2024-12-18
Recycling
EuRIC plastics recyclers publish roadmap for industry competitiveness and innovation
 2024-12-17
Recycling
UMAC expands immediately available recycling line
 2024-12-09
Recycling
Rethinking plastic life: Case studies in Asian countries
 2024-12-04
Recycling
(INC-5 Direct) INC-5 adjourned without agreement, follow-up session planned in 2025
 2024-12-02

You May Also Like

{{[item['category']['name'],item['category']['english_name']][lang]}}
{{VueShowUserOrCompany(item.author)}} {{VueShowDisplayName(item.author)}}
Sponsored
{{item.title}} {{item['summary']}}
{{itags.name}}
{{item.updated_at}}
 {{item.likes_count}}       {{item.comments_count}}

You May Be Interested In

Change

  • People
  • Company
loading... No Content
{{[item.truename,item.truename_english][lang]}} {{[item.company_name,item.company_name_english][lang]}} {{[item.job_name,item.name_english][lang]}}
{{[item.company_name,item.company_name_english][lang]}} Company Name    {{[item.display_name,item.display_name_english][lang]}}  

Polyurethane Investment Medical Carbon neutral Reduce cost and increase efficiency CHINAPLAS Financial reports rPET INEOS Styrolution Evonik Borouge Polystyrene (PS) mono-material Sustainability Circular economy BASF SABIC Multi-component injection molding machine All-electric injection molding machine Thermoforming machine

Asahi Kasei develops technology for recycling continuous carbon fiber

识别右侧二维码,进入阅读全文
下载
x 关闭
订阅
亲爱的用户,请填写一下信息
I have read and agree to the 《Terms of Use》 and 《Privacy Policy》
立即订阅
Top
Feedback
Chat
News
Market News
Applications
Products
Video
In Pictures
Specials
Activities
eBook
Front Line
Plastics Applications
Chemicals and Raw Material
Processing Technologies
Products
Injection
Extrusion
Auxiliary
Blow Molding
Mold
Hot Runner
Screw
Applications
Packaging
Automotive
Medical
Recycling
E&E
LED
Construction
Others
Events
Conference
Webinar
CHINAPLAS
CPS+ eMarketplace
Official Publications
CPS eNews
Media Kit
Social Media
Facebook
Youtube